Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.465
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
iScience ; 27(4): 109459, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558930

RESUMO

Future-oriented behavior is regarded as a cornerstone of human cognition. One key phenomenon through which future orientation can be studied is the delay of gratification, when consumption of an immediate reward is withstood to achieve a larger reward later. The delays used in animal delay of gratification paradigms are rather short to be considered relevant for studying human-like future orientation. Here, for the first time, we show that rhesus macaques exhibit human-relevant future orientation downregulating their operant food consumption in anticipation of a nutritionally equivalent but more palatable food with an unprecedentedly long delay of approximately 2.5 h. Importantly, this behavior is not a result of conditioning but intrinsic to the animals. Our results show that the cognitive time horizon of primates, when tested in ecologically valid foraging-like experiments, extends much further into the future than previously considered, opening up new avenues for translational biomedical research.

2.
iScience ; 27(4): 109295, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558934

RESUMO

The study investigates age-related decline in listening abilities, particularly in noisy environments, where the challenge lies in extracting meaningful information from variable sensory input (figure-ground segregation). The research focuses on peripheral and central factors contributing to this decline using a tone-cloud-based figure detection task. Results based on behavioral measures and event-related brain potentials (ERPs) indicate that, despite delayed perceptual processes and some deterioration in attention and executive functions with aging, the ability to detect sound sources in noise remains relatively intact. However, even mild hearing impairment significantly hampers the segregation of individual sound sources within a complex auditory scene. The severity of the hearing deficit correlates with an increased susceptibility to masking noise. The study underscores the impact of hearing impairment on auditory scene analysis and highlights the need for personalized interventions based on individual abilities.

3.
Front Cell Neurosci ; 18: 1379717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560294

RESUMO

Microglia are the resident immune cells of the central nervous system (CNS) and as such play crucial roles in regulating brain homeostasis. Their presence in neurodegenerative diseases is known, with neurodegeneration-associated risk genes heavily expressed in microglia, highlighting their importance in contributing to disease pathogenesis. Transcriptomics studies have uncovered the heterogeneous landscape of microglia in health and disease, identifying important disease-associated signatures such as DAM, and insight into both the regional and temporal diversity of microglia phenotypes. Quantitative mass spectrometry methods are ever increasing in the field of neurodegeneration, utilised as ways to identify disease biomarkers and to gain deeper understanding of disease pathology. Proteins are the main mechanistic indicators of cellular function, yet discordance between transcript and proteomic findings has highlighted the need for in-depth proteomic phenotypic and functional analysis to fully understand disease kinetics at the cellular and molecular level. This review details the current progress of using proteomics to define microglia biology, the relationship between gene and protein expression in microglia, and the future of proteomics and emerging methods aiming to resolve heterogeneous cell landscapes.

4.
Front Hum Neurosci ; 18: 1375342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562229

RESUMO

The present perspective introduces a novel psychometric tool designed to enhance the evaluation of alexithymia. Alexithymia, a condition marked by difficulties in recognizing and expressing emotions, along with a propensity to direct attention outside rather than toward one's own interior experiences, is commonly investigated through self-report questionnaires. These instruments assume that individuals have sufficient self-awareness and abstraction capabilities, which restricts the understanding of the underlying mechanisms of emotional recognition in individuals who do not possess these capacities. To address this lack, emerging technologies like virtual reality (VR) and 360° videos facilitate the recreation of immersive contexts, enabling subjects to engage with scenarios even remotely. Our innovative tool employs spherical video technology to recreate social and non-social scenarios that elicit emotions. Psychophysiological measures are collected during video observation; then, questions are asked to investigate how the subject consciously processes the emotions they experienced. This multimodal approach aims to capture both implicit and explicit emotion processing, providing a comprehensive assessment. Overall, the proposed psychometric tool offers the potential for a more nuanced understanding of alexithymic traits and their real-life impact, empowering clinicians to tailor treatment processes to individual needs based on a richer set of information.

5.
Cell Rep ; 43(4): 114025, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564333

RESUMO

Type I spiral ganglion neurons (SGNs) convey sound information to the central auditory pathway by forming synapses with inner hair cells (IHCs) in the mammalian cochlea. The molecular mechanisms regulating the formation of the post-synaptic density (PSD) in the SGN afferent terminals are still unclear. Here, we demonstrate that brain-specific angiogenesis inhibitor 1 (BAI1) is required for the clustering of AMPA receptors GluR2-4 (glutamate receptors 2-4) at the PSD. Adult Bai1-deficient mice have functional IHCs but fail to transmit information to the SGNs, leading to highly raised hearing thresholds. Despite the almost complete absence of AMPA receptor subunits, the SGN fibers innervating the IHCs do not degenerate. Furthermore, we show that AMPA receptors are still expressed in the cochlea of Bai1-deficient mice, highlighting a role for BAI1 in trafficking or anchoring GluR2-4 to the PSDs. These findings identify molecular and functional mechanisms required for sound encoding at cochlear ribbon synapses.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38561567

RESUMO

Atypical orienting of visuospatial attention in autistic individuals or individuals with a high level of autistic-like traits (ALTs) has been well documented and viewed as a core feature underlying the development of autism. However, there has been limited testing of three alternative theoretical positions advanced to explain atypical orienting - difficulty in disengagement, cue indifference, and delay in orienting. Moreover, research commonly has not separated facilitation (reaction time difference between neutral and valid cues) and cost effects (reaction time difference between invalid and neutral cues) in orienting tasks. We addressed these limitations in two experiments that compared groups selected for Low- and High-ALT levels on exogenous and endogenous versions of the Posner cueing paradigm. Experiment 1 showed that High-ALT participants exhibited a significantly reduced cost effect compared to Low-ALT participants in the endogenous cueing task, although the overall orienting effect remained small. In Experiment 2, we increased task difficulty of the endogenous task to augment cueing effects. Results were comparable to Experiment 1 regarding the finding of a reduced cost effect for High-ALT participants on the endogenous cueing task and additionally demonstrated a reduced facilitation effect in High-ALT participants on the same task. No ALT group differences were observed on an exogenous cueing task included in Experiment 2. These findings suggest atypical orienting in High-ALT individuals may be attributable to general cue indifference, which implicates differences in top-down attentional processes between Low- and High-ALT individuals. We discuss how indifference to endogenous cues may contribute to social cognitive differences in autism.

7.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567902

RESUMO

Dopamine and orexins (hypocretins) play important roles in regulating reward-seeking behaviors. It is known that hypothalamic orexinergic neurons project to dopamine neurons in the ventral tegmental area (VTA), where they can stimulate dopaminergic neuronal activity. Although there are reciprocal connections between dopaminergic and orexinergic systems, whether and how dopamine regulates the activity of orexin neurons is currently not known. Here we implemented an opto-Pavlovian task in which mice learn to associate a sensory cue with optogenetic dopamine neuron stimulation to investigate the relationship between dopamine release and orexin neuron activity in the lateral hypothalamus (LH). We found that dopamine release can be evoked in LH upon optogenetic stimulation of VTA dopamine neurons and is also naturally evoked by cue presentation after opto-Pavlovian learning. Furthermore, orexin neuron activity could also be upregulated by local stimulation of dopaminergic terminals in the LH in a way that is partially dependent on dopamine D2 receptors (DRD2). Our results reveal previously unknown orexinergic coding of reward expectation and unveil an orexin-regulatory axis mediated by local dopamine inputs in the LH.


Assuntos
Região Hipotalâmica Lateral , Área Tegmentar Ventral , Camundongos , Animais , Orexinas , Área Tegmentar Ventral/fisiologia , Dopamina , Receptores de Dopamina D2 , Neurônios Dopaminérgicos , Recompensa
8.
Elife ; 132024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568075

RESUMO

Learning invariances allows us to generalise. In the visual modality, invariant representations allow us to recognise objects despite translations or rotations in physical space. However, how we learn the invariances that allow us to generalise abstract patterns of sensory data ('concepts') is a longstanding puzzle. Here, we study how humans generalise relational patterns in stimulation sequences that are defined by either transitions on a nonspatial two-dimensional feature manifold, or by transitions in physical space. We measure rotational generalisation, i.e., the ability to recognise concepts even when their corresponding transition vectors are rotated. We find that humans naturally generalise to rotated exemplars when stimuli are defined in physical space, but not when they are defined as positions on a nonspatial feature manifold. However, if participants are first pre-trained to map auditory or visual features to spatial locations, then rotational generalisation becomes possible even in nonspatial domains. These results imply that space acts as a scaffold for learning more abstract conceptual invariances.


Assuntos
Generalização Psicológica , Aprendizagem , Humanos
9.
Elife ; 132024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568729

RESUMO

Primates rely on two eyes to perceive depth, while maintaining stable vision when either one eye or both eyes are open. Although psychophysical and modeling studies have investigated how monocular signals are combined to form binocular vision, the underlying neuronal mechanisms, particularly in V1 where most neurons exhibit binocularity with varying eye preferences, remain poorly understood. Here, we used two-photon calcium imaging to compare the monocular and binocular responses of thousands of simultaneously recorded V1 superficial-layer neurons in three awake macaques. During monocular stimulation, neurons preferring the stimulated eye exhibited significantly stronger responses compared to those preferring both eyes. However, during binocular stimulation, the responses of neurons preferring either eye were suppressed on the average, while those preferring both eyes were enhanced, resulting in similar neuronal responses irrespective of their eye preferences, and an overall response level similar to that with monocular viewing. A neuronally realistic model of binocular combination, which incorporates ocular dominance-dependent divisive interocular inhibition and binocular summation, is proposed to account for these findings.


Assuntos
Dominância Ocular , Olho , Animais , Visão Binocular , Macaca , Neurônios
11.
Cell Rep ; 43(4): 114042, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573858

RESUMO

Pathogenic infection elicits behaviors that promote recovery and survival of the host. After exposure to the pathogenic bacterium Pseudomonas aeruginosa PA14, the nematode Caenorhabditis elegans modifies its sensory preferences to avoid the pathogen. Here, we identify antagonistic neuromodulators that shape this acquired avoidance behavior. Using an unbiased cell-directed neuropeptide screen, we show that AVK neurons upregulate and release RF/RYamide FLP-1 neuropeptides during infection to drive pathogen avoidance. Manipulations that increase or decrease AVK activity accelerate or delay pathogen avoidance, respectively, implicating AVK in the dynamics of avoidance behavior. FLP-1 neuropeptides drive pathogen avoidance through the G protein-coupled receptor DMSR-7, as well as other receptors. DMSR-7 in turn acts in multiple neurons, including tyraminergic/octopaminergic neurons that receive convergent avoidance signals from the cytokine DAF-7/transforming growth factor ß. Neuromodulators shape pathogen avoidance through multiple mechanisms and targets, in agreement with the distributed neuromodulatory connectome of C. elegans.

12.
Cell Rep ; 43(4): 113991, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38573855

RESUMO

The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.

13.
iScience ; 27(4): 109550, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38595796

RESUMO

During the evolution of large models, performance evaluation is necessary for assessing their capabilities. However, current model evaluations mainly rely on specific tasks and datasets, lacking a united framework for assessing the multidimensional intelligence of large models. In this perspective, we advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests, including crystallized, fluid, social, and embodied intelligence. The AGI tests consist of well-designed cognitive tests adopted from human intelligence tests, and then naturally encapsulates into an immersive virtual community. We propose increasing the complexity of AGI testing tasks commensurate with advancements in large models and emphasizing the necessity for the interpretation of test results to avoid false negatives and false positives. We believe that cognitive science-inspired AGI tests will effectively guide the targeted improvement of large models in specific dimensions of intelligence and accelerate the integration of large models into human society.

14.
iScience ; 27(4): 109528, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38595797

RESUMO

Diabetic neuropathy (DN) is a major complication of diabetes mellitus. Chondroitin sulfate (CS) is one of the most important extracellular matrix components and is known to interact with various diffusible factors; however, its role in DN pathology has not been examined. Therefore, we generated CSGalNAc-T1 knockout (T1KO) mice, in which CS levels were reduced. We demonstrated that diabetic T1KO mice were much more resistant to DN than diabetic wild-type (WT) mice. We also found that interactions between pericytes and vascular endothelial cells were more stable in T1KO mice. Among the RNA-seq results, we focused on the transforming growth factor ß signaling pathway and found that the phosphorylation of Smad2/3 was less upregulated in T1KO mice than in WT mice under hyperglycemic conditions. Taken together, a reduction in CS level attenuates DN progression, indicating that CS is an important factor in DN pathogenesis.

15.
Cell Rep ; 43(4): 113986, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598336

RESUMO

Layer 5 neurons of the neocortex receive their principal inputs from layer 2/3 neurons. We seek to identify the nature and extent of the plasticity of these projections with motor learning. Using optogenetic and viral intersectional tools to selectively stimulate distinct neuronal subsets in rat primary motor cortex, we simultaneously record from pairs of corticospinal neurons associated with distinct features of motor output control: distal forelimb vs. proximal forelimb. Activation of Channelrhodopsin2-expressing layer 2/3 afferents onto layer 5 in untrained animals produces greater monosynaptic excitation of neurons controlling the proximal forelimb. Following skilled grasp training, layer 2/3 inputs onto corticospinal neurons controlling the distal forelimb associated with skilled grasping become significantly stronger. Moreover, peak excitatory response amplitude nearly doubles while latency shortens, and excitatory-to-inhibitory latencies become significantly prolonged. These findings demonstrate distinct, highly segregated, and cell-specific plasticity of layer 2/3 projections during skilled grasp motor learning.

16.
Cell Rep ; 43(4): 114071, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592973

RESUMO

Understanding how emotional processing modulates learning and memory is crucial for the treatment of neuropsychiatric disorders characterized by emotional memory dysfunction. We investigate how human medial temporal lobe (MTL) neurons support emotional memory by recording spiking activity from the hippocampus, amygdala, and entorhinal cortex during encoding and recognition sessions of an emotional memory task in patients with pharmaco-resistant epilepsy. Our findings reveal distinct representations for both remembered compared to forgotten and emotional compared to neutral scenes in single units and MTL population spiking activity. Additionally, we demonstrate that a distributed network of human MTL neurons exhibiting mixed selectivity on a single-unit level collectively processes emotion and memory as a network, with a small percentage of neurons responding conjointly to emotion and memory. Analyzing spiking activity enables a detailed understanding of the neurophysiological mechanisms underlying emotional memory and could provide insights into how emotion alters memory during healthy and maladaptive learning.

17.
Front Hum Neurosci ; 18: 1305164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584851

RESUMO

Introduction: The research in consumer neuroscience has identified computational methods, particularly artificial intelligence (AI) and machine learning, as a significant frontier for advancement. Previously, we utilized functional magnetic resonance imaging (fMRI) and artificial neural networks (ANNs) to model brain processes related to brand preferences in a paradigm exempted from motor actions. In the current study, we revisit this data, introducing recent advancements in explainable artificial intelligence (xAI) to gain insights into this domain. By integrating fMRI data analysis, machine learning, and xAI, our study aims to search for functional brain networks that support brand perception and, ultimately, search for brain networks that disentangle between preferred and indifferent brands, focusing on the early processing stages. Methods: We applied independent component analysis (ICA) to overcome the expected fMRI data's high dimensionality, which raises hurdles in AI applications. We extracted pertinent features from the returned ICs. An ANN is then trained on this data, followed by pruning and retraining processes. We then apply explanation techniques, based on path-weights and Shapley values, to make the network more transparent, explainable, and interpretable, and to obtain insights into the underlying brain processes. Results: The fully connected ANN model obtained an accuracy of 54.6%, which dropped to 50.4% after pruning. However, the retraining process allowed it to surpass the fully connected network, achieving an accuracy of 55.9%. The path-weights and Shapley-based analysis concludes that, regarding brand perception, the expected initial participation of the primary visual system is followed. Other brain areas participate in early processing and discriminate between preferred and indifferent brands, such as the cuneal and the lateral occipital cortices. Discussion: The most important finding is that a split between processing brands|preferred from brands|indifferent may occur during early processing stages, still in the visual system. However, we found no evidence of a "decision pipeline" that would yield if a brand is preferred or indifferent. The results suggest the existence of a "tagging"-like process in parallel flows in the extrastriate. Network training dynamics aggregate specific processes within the hidden nodes by analyzing the model's hidden layer. This yielded that some nodes contribute to both global brand appraisal and specific brand category classification, shedding light on the neural substrates of decision-making in response to brand stimuli.

18.
Ann Neurosci ; 31(1): 44-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38584982

RESUMO

Background: Lymphomatosis cerebri (LC) is a rare manifestation of primary central nervous system lymphoma (PCNSL) with only a few cases reported in the literature, appearing as diffuse infiltrating process rather than a solitary mass. It is a non-Hodgkin's type of lymphoma and is usually of the B-cell type origin. Purpose: We intend to report this unique case of LC which came across as a diagnostic challenge. Methods: A 53-year-old gentleman presented with complaints of two episodes of seizures 24 h apart followed by postictal confusion for 10-15 min. He underwent multiple MRI scans and underwent a biopsy of the lesion which reported infection, but he did not benefit from the treatment. Result: The imaging was reviewed, suspicion of LC was raised and a review of histopathology was requested which later confirmed primary CNS lymphoma. Conclusion: LC is a rare but established manifestation of PCNSL which mimics multiple other conditions. Understanding of the imaging pattern is important in making the diagnosis and differentiating it from other mimic conditions.

19.
iScience ; 27(4): 109522, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38585660

RESUMO

Individuals within the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD) often experience disruptive mental behaviors and sleep-wake disturbances. The hallmark of ALS/FTD is the pathological involvement of TAR DNA-binding protein 43 (TDP-43). Understanding the role of TDP-43 in the circadian clock holds promise for addressing these behavioral abnormalities. In this study, we unveil TDP-43 as a pivotal regulator of the circadian clock. TDP-43 knockdown induces intracellular arrhythmicity, disrupts transcriptional activation regulation, and diminishes clock genes expression. Moreover, our experiments in adult mouse reveal that TDP-43 knockdown, specifically within the suprachiasmatic nucleus (SCN), induces locomotor arrhythmia, arrhythmic c-Fos expression, and depression-like behavior. This observation offers valuable insights into the substantial impact of TDP-43 on the behavioral aberrations associated with ALS/FTD. In summary, our study illuminates the significance of TDP-43 in circadian regulation, shedding light on the circadian regulatory mechanisms that may elucidate the pathological underpinnings of ALS/FTD.

20.
iScience ; 27(4): 109527, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38585658

RESUMO

Hearing loss can lead to long-lasting effects on the central nervous system, and current therapies, such as auditory training and rehabilitation, show mixed success in improving perception and speech comprehension. Vagus nerve stimulation (VNS) is an adjunctive therapy that can be paired with rehabilitation to facilitate behavioral recovery after neural injury. However, VNS for auditory recovery has not been tested after severe hearing loss or significant damage to peripheral receptors. This study investigated the utility of pairing VNS with passive or active auditory rehabilitation in a rat model of noise-induced hearing loss. Although auditory rehabilitation helped rats improve their frequency discrimination, learn novel speech discrimination tasks, and achieve speech-in-noise performance similar to normal hearing controls, VNS did not enhance recovery of speech sound perception. These results highlight the limitations of VNS as an adjunctive therapy for hearing loss rehabilitation and suggest that optimal benefits from neuromodulation may require restored peripheral signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA